Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37683091

RESUMO

An axial-connecting trimer of the porphyrin phosphorus(V) complex was synthesized to evaluate the relaxation process of the photoexcited state and the photosensitizer activity. The photoexcitation energy was localized on the central unit of the phosphorus(V)porphyrin trimer. The photoexcited state of the central unit was relaxed through a process similar to that of the monomer phosphorus(V)porphyrin. The excited state of this axially connected type of phosphorus(V)porphyrin trimer was not deactivated through intramolecular electron transfer. The singlet oxygen generation quantum yield of the trimer was almost the same as that of the monomer. The phosphorus(V)porphyrin, trimer, and monomer bound to human serum albumin and oxidized the tryptophan residue via singlet oxygen generation and electron transfer during visible light irradiation. The photocytotoxicity of these phosphorus(V)porphyrins on two cell lines was examined. The monomer induced photocytotoxicity; however, the trimer did not show cytotoxicity with or without photoirradiation. In summary, the photoexcited state of the trimer was almost the same as that of the monomer, and these phosphorus(V)porphyrins demonstrated a similar protein-photodamaging activity. The difference in association between the photosensitizer molecules and cells is the key factor of phototoxicity by these phosphorus(V)porphyrins.

2.
J Phys Chem B ; 126(4): 912-921, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35068153

RESUMO

1-Anthracen-2-yl-3-phenylurea (2PUA) is an aromatic urea compound, which forms a hydrogen-bonded complex with an acetate anion (AcO-), 2PUA-AcO- complex. We investigated the photoinduced reaction of the 2PUA-AcO- complex in dimethyl sulfoxide (DMSO) by nanosecond time-resolved infrared (TR-IR) spectroscopy. TR-IR spectra obtained after the photoexcitation of 2PUA with the equal concentration of AcO- were consistently explained by a photoinduced proton transfer model. The spectral and temporal profiles of the TR-IR spectra largely depended on concentration conditions of 2PUA and AcO-. Under the condition where excessive amounts of AcO- existed, the TR-IR spectra contained an unexpected signal whose amplitude was related to the concentration of free AcO- in the solution. Using singular value decomposition analysis of the concentration-dependent TR-IR spectra, we extracted the spectral component that reflects the photoinduced reaction of the 2PUA-AcO- complex. The extracted spectrum resembled the TR-IR spectrum obtained under the equal concentration condition, indicating that the same proton transfer occurs during the photoinduced reaction of the 2PUA-AcO- complex irrespective of the concentration conditions. Comparing the steady-state and transient IR spectra of the 2PUA with AcO- in DMSO with density functional theory calculations suggests that both 2PUA-AcO- complex and tautomer species interact with solvent DMSO molecules in their electronic ground states to a large extent.


Assuntos
Prótons , Ureia , Acetatos , Ânions , Análise Multivariada , Espectrofotometria Infravermelho
3.
Photochem Photobiol Sci ; 20(4): 523-532, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33772478

RESUMO

To investigate substitution effects on excited-state intermolecular proton transfer (ESPT) reactions as well as acidity of proton donating fragments in the ground state, we synthesized substituted anthracen-2-yl-3-phenylurea derivatives that form a hydrogen bonds with acetate anions and undergo ESPT reaction. Fluorescence lifetime measurements and their kinetic analyses revealed that the trifluoromethyl group on the phenyl ring as an electron-withdrawing group caused a slow ESPT reaction despite an increase in the acidity of the N-H fragment in the ground state. In contrast, the methoxy group as a donating group leads to a fast ESPT reaction despite a reduction of the acidity of the N-H fragment in the ground state. These effects of substituents on ESPT reaction are due to their influence on the charge transfer reaction, which occurs from the N-H fragment to the anthryl ring to increase the acidity of N-H followed by ESPT reaction, over the urea unit by a combination of resonance and inductive effects. These opposing effects of substituents on the acidity of the urea unit in the ground and excited states provide an important insight in balancing the reactivity of proton transfer reaction in both the excited and ground states.

4.
J Phys Chem A ; 124(33): 6617-6628, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32786662

RESUMO

1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), which forms weak hydrogen bonds despite the high basicity caused by its hindered structure, was used to investigate tautomer formation via excited-state intermolecular proton-transfer (ESPT) reactions. The kinetics of the ESPT reactions of anthracen-2-yl-3-phenylurea (2PUA) in the presence of DBU were compared to that observed for the acetate anion (Ac) using time-resolved fluorescence measurement. Based on the association constants in the ground state, the intermolecular hydrogen bond between 2PUA and DBU was less stable than the bond between 2PUA and Ac due to steric hindrance and the geometry of the hydrogen bond. In the fluorescence spectra, 2PUA-DBU displayed prominent tautomeric emission in chloroform (CHCl3), whereas 2PUA-Ac exhibited distinct tautomeric emissions in dimethyl sulfoxide (DMSO). Kinetic analysis revealed that the rate constant of the ESPT reaction of 2PUA-DBU remarkably decreased when the proton-accepting ability of the solvent increased whereas the reaction of 2PUA-Ac was linked to the solvent polarity rather than proton-accepting ability. These results indicated that moderate hydrogen bonds due to steric hindrance were influenced by the type of solvent present, particularly if the solvents exhibited proton-accepting capabilities like DMSO. This, in turn, affected the rate constant of tautomer formation.

5.
Photochem Photobiol ; 96(1): 21-27, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560412

RESUMO

We investigated the fluorescent properties, including the excited-state intermolecular proton transfer, of urea derivatives comprising a coumarin ring, which is a widely used fluorophore. We prepared two different coumarin-urea derivatives, 6CU and 7CU, which bear a urea-based substituent at the 6 and 7 positions of a coumarin ring, respectively. In the presence of the acetate ion, 7CU showed additional tautomer fluorescence emission with respect to 6CU, indicating that tautomer formation depends on the positions of the urea-based substituent on the coumarin ring. Thus, the resonance structures of urea derivatives might play an important role in the behavior of dual fluorescence, which is an important phenomenon applicable to photochemical anion sensing. Moreover, in order to further improve the fluorescence properties of the mentioned derivatives, a CF3 group was introduced in a phenyl ring opposite to a coumarin ring. The fluorescence quantum yield of 7CUCF3 thus synthesized was 65 times as large as that of 7CU, an observation that renders 7CUCF3 a suitable anion sensor candidate. The results of this study will contribute to the development of new molecular designs for highly fluorescent sensing.

6.
Beilstein J Org Chem ; 15: 863-873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31019579

RESUMO

Novel caged nitroxides (nitroxide donors) with near-infrared two-photon (TP) responsive character, 2,2,6,6-tetramethyl-1-(1-(2-(4-nitrophenyl)benzofuran-6-yl)ethoxy)piperidine (2a) and its regioisomer 2b, were designed and synthesized. The one-photon (OP) (365 ± 10 nm) and TP (710-760 nm) triggered release (i.e., uncaging) of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical under air atmosphere were discovered. The quantum yields for the release of the TEMPO radical were 2.5% (2a) and 0.8% (2b) in benzene at ≈1% conversion of 2, and 13.1% (2a) and 12.8% (2b) in DMSO at ≈1% conversion of 2. The TP uncaging efficiencies were determined to be 1.1 GM at 740 nm for 2a and 0.22 GM at 730 nm for 2b in benzene. The cytocidal effect of compound 2a on lung cancer cells under photolysis conditions was also assessed to test the efficacy as anticancer agents. In a medium containing 100 µg mL-1 of 2a exposed to light, the number of living cells decreased significantly compared to the unexposed counterparts (65.8% vs 85.5%).

7.
Photochem Photobiol Sci ; 17(5): 561-569, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29616691

RESUMO

In this paper, we report the solvent effect of excited state intermolecular proton transfer (ESIPT) reactions of urea compounds in the presence of tetrabutylammonium acetate (TBAAc). We prepared anthracene-urea compounds (9An and 2An), a pyrene-urea compound (Py) and an anthracene-diurea compound (9,10An), which have alkylsulfonyl groups to improve their solubility in various organic solvents. We investigated the solvent effects of the ESIPT reaction using absorption, fluorescence, and 1H NMR spectroscopy along with fluorescence decay measurements in dimethyl sulfoxide (DMSO), acetonitrile (MeCN), tetrahydrofuran (THF) and toluene. The tautomer fluorescence of 9An showed remarkable solvent dependence on the spectral red-shift compared with 2An, Py and 9,10An. As a result of the detailed spectroscopic investigations with regard to the solvent including kinetic analysis of the ESIPT for 9AnAcO-, we revealed that the energy gap between the normal and tautomer forms in the excited state depended on the hydrogen bond acceptor basicity (ß), which is one of the Kamlet-Taft solvent parameters. Finally, we discovered that the tautomer structures of aromatic-urea compounds were stabilized by hydrogen bond interactions.

8.
Dalton Trans ; 47(12): 4087-4092, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29451289

RESUMO

The cationic Pt complexes with amide groups have been found to show dimer emission through hydrogen bonding interactions with counter anions even at low concentration. In order to investigate further details of dimer emission, we prepared three Pt complexes, Pt·B(C6F5)4, Pt·Cl, and Pt·PF6, whose counter anions possess different strengths of a hydrogen bonding acceptor. Hydrogen bonding interactions in the ground state and excited-state dynamics of the Pt complexes were evaluated by NMR analysis, temperature dependence, and kinetics of dimer emission. These studies revealed that the hydrogen bonding interaction in the ground state is essential for dimer emission, but too strong hydrogen bonding prevents dimer emission due to the inhibition of a stacked dimer formation in the excited state. Owing to this trade-off, the Pt complex with a moderate hydrogen bonding acceptor, PF6-, most effectively shows dimer emission. In general, a strong supramolecular interaction efficiently provides a desired assembled structure showing multi-molecular emission. We revealed a unique phenomenon that a moderate interaction is beneficial to effective multi-molecular emission.

9.
Org Biomol Chem ; 15(31): 6575-6583, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28749512

RESUMO

We report anthracene-diurea compounds which behave as anion sensors based on the fluorescence emission regulated by the substitution position on the anthracene ring. Anthracene-diurea compounds exhibit different excited-state intermolecular proton transfer (ESIPT) reactions depending on the pattern of the substituents. Three new anthracene-diurea compounds that have two phenylurea groups substituted at different positions on anthracene were synthesized. These compounds formed complexes with acetate ions through intermolecular hydrogen bonding between N-H and C[double bond, length as m-dash]O moieties in the ground state. The positions of the substituents greatly affected the excited-state intermolecular proton transfer. 1,5BPUA with urea groups at the 1 and 5 positions exhibited ESIPT reaction, which is energetically favorable for tautomer formation, in the presence of TBAAc. In contrast, 2,6BPUA with urea groups at low-electron-density positions (2 and 6 positions) showed no ESIPT reaction due to the inversion of the lowest unoccupied molecular orbital (LUMO) energy levels of the normal and tautomer states. Detailed spectroscopic measurements showed that the LUMO energy level of the normal form was lowered because the urea group acted as an electron-withdrawing group. In addition, 9,10BPUA exhibited strong electronic interactions between the two phenylurea moieties at the 9 and 10 positions, resulting in an ON1-OFF-ON2 response for acetate ions. Our findings offer guidelines for the molecular design of materials with anthracene moieties based on the substitution patterns of anthracene derivatives.

10.
Inorg Chem ; 56(15): 8726-8729, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28708384

RESUMO

Compounds with controllable color emissions are potentially useful as photoluminescent materials in imaging and sensing applications. Multimolecular emission can be used realizing variable-color emitters and has been demonstrated in the solid state. However, achieving multimolecular emission in solution is difficult to control. In this study, we used a combination of intermolecular interactions, namely hydrogen bonding and solvophobic effect, to modulate multimolecular emissions. A designed Pt complex demonstrated three emission colors: blue (monomer emission), yellow (emission form hydrogen-bonded dimer), and orange (aggregate emission). All of the emission modes exhibited high luminescence quantum yields, as a result of their uniform assemblies.

11.
Photochem Photobiol ; 93(5): 1187-1192, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28380663

RESUMO

A new photoreaction mechanism of "Three-state molecular switch" fluorescence sensor based on ON1 -OFF-ON2 sequence was achieved by anthracene-diurea compound, which was designed using two phenylurea groups and one anthracene, 9,10BtDSPUA. Photochemical properties of 9,10BtDSPUA and interaction between 9,10BtDSPUA and anion were investigated in detail by absorption, 1 H NMR, fluorescence, and fluorescence decay measurements. While the fluorescence of 9,10BtDSPUA in DMSO (ON1 ) was quenched in the presence of low concentration of acetate anion (OFF), fluorescence enhancement occurred by the addition of high concentration of acetate anion (ON2 ). This compound forms complex with acetate anion through hydrogen bonding interaction in the ground state resulted in tautomer formation by excited state intermolecular proton transfer (ESIPT) on irradiation. Whereas single coordination of acetate anion to anthracene-diurea compound may cause fluorescence quenching, full coordination may cause fluorescence enhancement due to suppressing ESIPT. This suppressing ESIPT was occurred by electron-donating resonance effect between two urea moieties. This study is the first example of ON1 -OFF-ON2 fluorescence sensor for concentration detection of acetate anion.

12.
Photochem Photobiol Sci ; 15(8): 1071-9, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27444124

RESUMO

The photodimerization reaction of anthracene derivatives was performed by capitalizing on intermolecular hydrogen bonds. Anthracene derivatives that can control the dimerization reaction depending on the substitution site were designed by using two anthryl moieties and one urea group, referred to as N,N'-dianthracen-n-ylurea, nDAU (n = 1, 2 and 9), which are symmetrically substituted by 1-anthryl, 2-anthryl and 9-anthryl groups, respectively. We investigated the excimer emission and photodimerization reaction of these anthracene-urea derivatives using absorption, emission, and (1)H NMR spectroscopy along with fluorescence decay measurements. All derivatives showed a concentration dependence of their fluorescence spectra and multiple fluorescence lifetime components even at 10(-6) M. Significantly, 9DAU resulted in an intermolecular photodimerization reaction. These differences in photoreactivity of nDAU may depend on variations in the overlap of the intermolecularly associated anthracene rings of nDAU by hydrogen bonding between intermolecular urea moieties. Furthermore, the dimerization quantum yield of 9DAU was reduced by the addition of tetrabutylammonium acetate (TBAAc). Consequently, we revealed that the substitution site and the addition of TBAAc affected the dimerization reaction of anthracene-urea derivatives.

13.
Photochem Photobiol Sci ; 14(10): 1864-71, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219627

RESUMO

We report herein the selective preparation of normal, tautomeric, and dual-fluorescent molecules with a common ESIPT core. 2'-Hydroxyacetophenone (OHAP) is known as a typical molecule that undergoes excited-state intramolecular hydrogen transfer (ESIPT) to display fluorescence emission from the excited state of the tautomer. In this study, a series of ten OHAP-cored fluorescent molecules were prepared and their excited state properties have been explored. The bathochromic shift of the π-π* absorption band with π-extensions of substituents of these molecules indicates that the excitation energy of the normal form of the OHAP unit was reduced due to the substituents, while the energy of the excited tautomer appeared to be independent of the π-extension of the substituents. When pyrene or anthracene was connected at the end (molecules 4 and 5), only normal fluorescence appeared, and the tautomer fluorescence disappeared. An anthracene derivative (molecule 10) displayed dual fluorescence, indicating that the normal and the tautomer excited states were energetically "balanced". A fluorescence lifetime analysis revealed the ESIPT reaction rate of 10 to be much slower than those of other derivatives and that the normal and tautomer forms were in equilibrium in the excited state.

14.
Chem Res Toxicol ; 28(2): 262-7, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25616052

RESUMO

The mechanism of photosensitized protein damage byphosphorus(V) tetraphenylporphyrin derivatives (P(V)TPPs) wasquantitatively clarified. P(V)TPPs bound to human serum albumin(HSA), a water-soluble protein, and damaged its tryptophan residueduring photoirradiation. P(V)TPPs photosensitized singlet oxygen ((1)O(2))generation, and the contribution of (1)O(2) to HSA damage was confirmedby the inhibitory effect of sodium azide, a (1)O(2) quencher. However,sodium azide could not completely inhibit HSA damage, suggesting thecontribution of an electron transfer mechanism to HSA damage. Thedecrement in the fluorescence lifetime of P(V)TPPs by HSA supportedthe electron transfer mechanism. The contribution of these processes could be determined by the kinetic analysis of the effect ofsodium azide on the photosensitized protein damage by P(V)TPPs.


Assuntos
Fósforo/química , Processos Fotoquímicos , Porfirinas/química , Albumina Sérica/química , Albumina Sérica/efeitos da radiação , Oxigênio Singlete/análise , Transporte de Elétrons , Humanos , Modelos Moleculares , Estrutura Molecular , Oxigênio Singlete/metabolismo , Azida Sódica/farmacologia
15.
Inorg Chem ; 53(3): 1355-60, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24422462

RESUMO

A dipyrrin complex has been one of the most utilized fluorescent dyes, and a variety of dipyrrin complexes show intriguing functions based on the various coordination structures of the central element. We now report the synthesis, structure, and photophysical properties of germanium and stannane complexes of the N2O2-type tetradentate dipyrrin, L·Ge and L·Sn, which are heavier analogues of the previously reported dipyrrin silicon complex, L·Si. The central group-14 atoms of the monomeric complexes have geometries close to trigonal bipyramidal (TBP), in which the contribution of the square-pyramidal (SP) character becomes higher as the central atom is heavier. Interestingly, L·Sn formed a dimeric structure in the crystal. All complexes L·Si, L·Ge, and L·Sn showed a fluorescence in the red/NIR region. Fluorescence quantum yields of L·Ge and L·Sn are higher than that of L·Si. These results indicated that the central atom on the dipyrrin complexes contributes not only to the geometry difference but also to tuning the fluorescence properties.


Assuntos
Complexos de Coordenação/química , Germânio/química , Pirenos/química , Silício/química , Estanho/química , Cristalografia por Raios X , Luminescência , Modelos Moleculares
16.
J Phys Chem B ; 117(43): 13490-6, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24144045

RESUMO

To control the activity of singlet oxygen ((1)O2) generation by photosensitizer through interaction with DNA, the electron- donor-connecting water-soluble porphyrin, meso-(9-anthryl)tris(N-methyl-p-pyridinio)porphyrin (AnTMPyP), was designed and synthesized. Molecular orbital calculation speculated that the photoexcited state of AnTMPyP can be deactivated via intramolecular electron transfer from the anthracene moiety to the porphyrin moiety, forming a charge-transfer (CT) state. The electrostatic interaction between the cationic porphyrin and anionic DNA predicts a rise in the CT state energy, leading to the inhibition of the electron transfer quenching. AnTMPyP showed almost no fluorescence in an aqueous solution, and the fluorescence lifetime was very short (<0.04 ns). Furthermore, this porphyrin did not demonstrate (1)O2 generating activity under photoirradiation. The fluorescence intensity and lifetime of AnTMPyP were markedly increased in the presence of DNA. The photosensitized (1)O2 generation by this porphyrin was also enhanced through interaction with DNA. The estimated quantum yield of (1)O2 generation by AnTMPyP interacting with DNA without guanine sequence was 0.22. The molecular design to control the photosensitized (1)O2 generation is possible based on the regulation of electron transition and steric hindrance of photosensitizing molecule.


Assuntos
DNA/metabolismo , Elétrons , Fármacos Fotossensibilizantes/metabolismo , Oxigênio Singlete/metabolismo , DNA/química , Modelos Moleculares , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Porfirinas/síntese química , Porfirinas/química , Porfirinas/metabolismo , Teoria Quântica , Oxigênio Singlete/química
17.
Bioorg Med Chem Lett ; 23(9): 2704-7, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23511022

RESUMO

For the purpose of the basic study of photodynamic therapy, the activity of the water-soluble P(V)porphyrin, dimethoxyP(V)tetraphenylporphyrin chloride (DMP(V)TPP), on photosensitized protein damage was examined. The quantum yield of singlet oxygen generation by DMP(V)TPP (0.64) was comparable with that of typical porphyrin photosensitizers. Absorption spectrum measurement demonstrated the binding interaction between DMP(V)TPP and human serum albumin, a water-soluble protein. Photo-irradiated DMP(V)TPP damaged the amino acid residue of human serum albumin, resulting in the decrease of the fluorescence intensity from the tryptophan residue of human serum albumin. A singlet oxygen quencher, sodium azide, could not completely inhibit the damage of human serum albumin, suggesting that the electron transfer mechanism contributes to protein damage as does singlet oxygen generation. The decrease of the fluorescence lifetime of DMP(V)TPP by human serum albumin supported the electron transfer mechanism. The estimated contribution of the electron transfer mechanism is 0.64. These results suggest that the activity of DMP(V)TPP can be preserved under lower oxygen concentration condition such as tumor.


Assuntos
Fármacos Fotossensibilizantes/metabolismo , Porfirinas/metabolismo , Albumina Sérica/metabolismo , Transporte de Elétrons , Humanos , Luz , Oxirredução , Fármacos Fotossensibilizantes/química , Porfirinas/química , Ligação Proteica , Albumina Sérica/química , Oxigênio Singlete/metabolismo , Azida Sódica/química , Azida Sódica/metabolismo , Espectrofotometria Ultravioleta
18.
J Phys Chem B ; 116(9): 3037-44, 2012 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-22313410

RESUMO

The dynamics of photosensitized singlet oxygen generation in a DNA microenvironment were examined using the DNA-binding photosensitizers berberine and palmatine. These photosensitizers generate singlet oxygen only under interaction with DNA because the singlet excited state deactivates rapidly in a nonbinding environment. A kinetic study demonstrated the reaction process whereby singlet oxygen is generated through energy transfer from the triplet excited state of DNA-binding berberine (or palmatine) to molecular oxygen. The guanine-containing sequence of DNA slightly deactivated the singlet excited state of the photosensitizers, resulting in a decrease of the singlet oxygen yield. By the steric hindrance of the DNA strand, the rate constant of the singlet oxygen generation became smaller than that of the other water-soluble photosensitizer.


Assuntos
DNA/química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete
19.
Photochem Photobiol Sci ; 10(10): 1521-3, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21858325

RESUMO

The fluorescence quantum yield of cis-stilbene-cored rigid polyphenylene dendrimer (cis-G2) is 20% even at room temperature. Moreover, the fluorescence lifetime of cis-G2 is twice as long as that of the corresponding trans-isomer.

20.
Photochem Photobiol Sci ; 10(10): 1524-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21858351

RESUMO

A diphenylbutadiene-cored dendrimer exhibited a remarkably high quantum yield for trans-to-cis photoisomerization in aqueous solution. Analysis of the fluorescence lifetimes and the wavelength-dependent excitation spectra suggested that the core butadiene adopts multiple conformations, one or several of which is sufficiently distorted to undergo preferential photoisomerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...